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A thesis for interaction is proposed as a foundation for theory of interaction. It formulates 
the minimal content computability and the maximal channel computability of all models 
of interaction by fixing a minimal model and a maximal model. It is shown that the 
interactive extensions of the recursive function model, the Turing machine model and the 
λ-calculus model all fall within the realm of the thesis. A major technical contribution is 
the design of interpreters in the maximal model for the models that fit in the thesis.
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1. Introduction

“The theory of computation has traditionally been studied almost entirely in the abstract, as a topic in pure mathematics. 
This is to miss the point of it. Computers are physical objects, and computations are physical processes. What computers 
can or cannot compute is determined by the laws of physics alone, and not by pure mathematics.” — David Deutsch [7]

Physical implementability is the very foundation of computer science, the Church-Turing Thesis states that the functions 
implementable by physical devices are precisely those definable by the mathematical models of computation [23,6,56,30]. 
The thesis has two sides of a story. One is about definability, pointing out that the mathematical models offer a formulation 
of the minimal capacity of computing devices. Digital computers built with von Neumann structure are physical devices 
that enjoy the minimal computing power. The other is to do with unsolvability, postulating that the mathematical models 
characterize the maximal power of computing devices in all shapes and forms. There has been an increasing interest in the 
mathematical model of computation based on quantum mechanics [41]. Leaving the implementation issue aside, it has been 
shown that such a model is equivalent to the Turing machine model as far as computability is concerned. All experiments 
indicate that the world is quantum mechanical. If we believe what physicists believe, the unsolvability theory based on 
the Church-Turing Thesis is a consequence of the laws of physics. Many other mathematical models of computation have 
been studied. The probabilistic Turing machine model [52] for example, believed by many to give a broader picture of 
efficient computation [17], is equivalent to Turing machine model in computability. Physical implementability emphasizes 
an important aspect of computation, the observability. For a computing device to be useful, it should be able to fetch input 
data from some medium and make the result of computation deliverable. In other words both inputs and outputs ought to 
be observable. The requirement on observability rules out for example models that deal with general functions on the field 
of real numbers.
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Physical implementability remains a fundamental constraint if one turns from models of computation to models of inter-
action. In a concurrent system processes communicate through channels; and channels are of physical nature. A frequently 
asked question about interaction models is if they are more powerful than computation models [24,31,57,32]. What is the 
expressiveness of distributed computing? How about Internet computing? For closed systems of interactive processes the 
Church-Turing Thesis already provides the answer to these questions, even though our everyday encounter with modern 
computing technology prompts us to think otherwise. The point is that a model is meant to define closed systems, and to 
a closed system composed of interactive physical devices the Church-Turing Thesis applies. If one is interested in open sys-
tems, there is a standard approach using oracles. Human interventions in Internet computing for example are best explained 
as interactions with oracles. Let’s see an example. Is there a process that admits the following deterministic interactive be-
haviour

O
a−→ . . .

a−→︸ ︷︷ ︸
i1 times

b−→ a−→ . . .
a−→︸ ︷︷ ︸

i2 times

b−→ . . . . (1)

such that i1 < i2 < . . . and {i1, i2, . . .} is the set of the Gödel indices of the total recursive functions? For a closed system 
that is immune from any external force (1) is an impossibility for otherwise there would be a process that answers deter-
ministically if a program computes a total function. We can of course think of O as an oracle and study the consequence 
of admitting it into our system. From the point of view of the Church-Turing Thesis there is nothing new about interaction 
models. What is new is that processes have access to external or global channels. They can choose to communicate, or not 
to communicate at a particular channel in the middle of computation. They can also send the identifier of a channel to 
other processes to create new computational topology dynamically. To what extent are manipulations on channels possible? 
It is this aspect of interaction that has not been under scrutiny in the light of the Church-Turing Thesis. But once we have 
raised the issue, we immediately know the answer. Because the computational behaviour of a process is constrained by 
the Church-Turing Thesis, a process can only make reference to channels in a computable manner. This strongly suggests, 
according to the discussion in the previous paragraph, to define a mathematical model that formalizes the maximal capacity 
of channel manipulation.

Channels are meant to be vehicles for messages. The Church-Turing Thesis implies that the messages produced by 
processes are all encodable by natural numbers, no matter how the messages may look like. Once again some kind of 
maximality emerges. There are two points that need be discussed here. One is about the rational behind the design deci-
sion to take as atomic a communication of a message whose size is unbounded. This is adopted by the value passing calculi 
of Hoare [29] and Milner [33] and the higher order process calculi of Thomsen [54,55] and Sangiorgi [49,50]. But isn’t it 
more natural to take the token-by-token communications as atomic? In the interactive machine example, is it better to let 
the content of a communication be just a symbol from an alphabet? One needs be careful about the answer. In an inter-
leaving semantics there is no guarantee that a piece of information can reach its destination in integrity if it is broken down 
into bounded size packages. In a concurrent scenario different parts of a message may be received by different processes. 
In practice there are ways to solve this problem. In this paper we take that a complete piece of information is transmitted 
in an atomic interaction. This is to guarantee that our models are complete by the criterion of this paper [14]. The second 
point is concerned with dynamic creation of private channels. Since we cannot restrict the number of global channels a 
process needs to make use of, it is again at the right level of abstraction to assume the availability of a potentially infinite 
number of global channels. How about private channels? Do we need to assume that there is an infinite number of private 
channels? In Section 5 we will give an interesting interpretation that will shed more light on this issue.

Physical implementability may tell us a lot more about models of interaction. What we have discussed in the preceding 
paragraphs are those aspects most important to the main theme of the paper. We shall propose a thesis for interaction that 
plays a similar role for theory of interaction as Church-Turing Thesis plays for theory of computation. We shall prove that 
the fundamental models of computation can all be lifted to models of interaction that satisfy the thesis. After fifty years 
of concurrency theory [45], our understanding of concurrency theory has reached a stage where new results are built from 
known results and the whole theory is based upon a firm foundation. The thesis to be proposed aims to provide one such 
foundation. At the technical level the contribution of this paper includes the proposal of a maximal interaction model and 
the proofs that the models of this paper are all submodels of the maximal model. The proofs of the submodel relationship 
make heavy use of the universal process technique, and the proofs of the negative results rely on a generalization of the 
technique proposed in [14].

The work of this paper derives inspiration from a number of previous work. The barbed bisimulation [36] pioneers a 
model independent approach to concurrency theory. The branching bisimulation [21,22] offers a powerful tool in the model 
independent scenario. The theory of expressiveness is an on-going topic for research [18]. Studies in this direction [39,
37,42,25,26,16] help reach a consensus on criteria for comparing process models, which eventually lead to a theory of 
interaction [14]. The latter is a precursor to the present work.

In concurrency theory many process models have been proposed and many process combinators have been studied [38]. 
The concurrent composition operator “|” for example has several variants. In majority models, say in CCS, “|” is an enabling 
operator that allows processes to communicate through shared channels. In P | Q the processes P and Q may interact 
through common channels, they may also act on their own. In CSP style models there is an interface parallel operator “|L ”. 
115



Y. Fu Theoretical Computer Science 897 (2022) 114–134
In P |L Q the processes P , Q may synchronize at channels in L; they may not synchronize at a channel not in L. In the 
ambient style models [5] the composition operator “|” allows one ambient to move inside another ambient. In the theory 
of interaction [14] the focus is on the interaction models that have the CCS style binary composition operator and the 
standard restriction operator. An interaction is a communication between two parties via a single channel. When applying a 
restriction operator (p), also called localization operator, to a term T , one gets a term (p)T in which the private channel p
can only be seen within T . It has been shown that without the restriction operator the composition operator “|” is weaker 
than one expects [16]. The reason for that is that all intended communications can be interrupted by the environment. For 
example CCS without the restriction operator is not Turing complete. The theory of interaction does not claim to cover all 
the models studied in concurrency theory. As a sequel to [14] the models considered in this paper are of the same kind. This 
is why it is titled “a theory of interaction” rather than “the theory of interaction”. The structural rules for our composition 
and restriction operators are the following.

T0
λ−→ T ′

0

T0 | T1
λ−→ T ′

0 | T1

T1
λ−→ T ′

1

T0 | T1
λ−→ T0 | T ′

1

T
λ−→ T ′

(p)T
λ−→ (p)T ′

p /∈ λ (2)

where λ stands for an action and p /∈ λ means that p does not appear in λ. These semantic rules are common to all the 
models considered in this paper. We will not mention them any more.

The rest of the paper is organized as follows. Section 2 reviews a few preliminaries of the theory of interaction developed 
in [14]. Section 3 defines three interaction models. Section 4 postulates a thesis for interaction models and points out that 
the interactive Turing machine model and the interactive recursive function model satisfy the thesis. Section 5 establishes 
the fact that the interactive λ-calculus model and the π -calculus also satisfy the thesis. Section 6 studies the relative 
expressiveness between the models in terms of negative results. Section 7 points out some research directions.

This paper is a sequel to [14]. The latter paper contains nothing about the soundness of the models, which is a main topic 
of the present paper. The definition of the soundness and all the soundness proofs are new. Section 6 is taken from [15]. It 
describes a very interesting and powerful technique for proving negative results.

2. Equality and submodel

Milner-Park’s bisimulation approach [33,43] to observational equivalence has been a standard in concurrency theory. Var-
ious bisimulation equalities have been studied in [35,49,28,44,10] for the π -calculus and in [54,55,49,50,58] for higher order 
calculi. These are weak bisimilarities without any consideration to divergence. Two refinements of Milner-Park’s bisimula-
tion have played an important role in recent studies of interaction models [14]. The first is the branching bisimulation of 
van Glabbeek and Weijland [21,22] that imposes the additional condition that a change-of-state internal action must be 
bisimulated. In addition to the bisimulation property we shall pay particular attention to divergence. There is a detailed 
discussion in [19] on divergence conditions with regards to branching bisimulation. The criterion we adopt for divergence 
sensitive equivalence was introduced by Priese [47]. To define a model independent equality for interactive objects, we as-
sume that there is a dichotomy on the actions of every interaction model. There are internal actions and external actions. 
An internal transition, or a single computation step, is denoted by τ−→. We shall write =⇒ for the reflexive and transitive 
closure of τ−→, and τ=⇒ for the transitive closure of τ−→. The external actions are message-passing actions through global 
channels.

Definition 1. A relation R on processes is a simulation if at least one of the following is valid whenever P R Q and P
τ−→ P ′:

1. Q =⇒ Q ′ and P R Q ′ and P ′ R Q ′ for some Q ′;
2. Q =⇒ Q ′′ τ−→ Q ′ and P R Q ′′ and P ′ R Q ′ for some Q ′′, Q ′ .

The relation R is a bisimulation if both R and its inverse relation R−1 are simulations. It is codivergent if P R Q τ−→
Q 1

τ−→ . . .
τ−→ Q i

τ−→ . . . implies that P
τ=⇒ P ′ R Q k for some k ≥ 0 and some process P ′ , and R−1 satisfies the same 

property.

Both bisimulation and codivergence are properties about computation.
The second refinement of Milner-Park’s bisimulation is the barbed bisimulation of Milner and Sangiorgi [36], which 

provides a model independent equivalence for processes. Central to the barbed bisimulation is the requirement that equality 
for interactive objects should be closed under concurrent composition and preserve observability.

Definition 2. A process P is observable at the global channel a, notation P⇓a , if P =⇒ P ′ for some P ′ that can perform some 
external action at channel a.
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Definition 3. A relation R is extensional if (P | P ′) R (Q | Q ′) whenever P R Q and P ′ R Q ′ . It is equipollent if P R Q implies 
P⇓a ⇔ Q ⇓a for every global channel a.

Extensionality and equipollence are properties about interaction.
Bisimulation, codivergence, extensionality and equipollence apply to all models considered in this paper. This is because 

they do not refer to any particularity of external actions. Internal actions are basically the same in all models [13] and are 
therefore model independent.

2.1. Process equality

Putting together the conditions introduced in Definition 1 and Definition 3, we get the process equality introduced 
in [14]. In the rest of the paper, M, N stand for any models considered in this paper. A process definable in M is often 
called an M-process.

Definition 4. The absolute equality =M on M-processes is the largest reflexive, extensional, equipollent, codivergent bisim-
ulation.

It is a standard exercise to show that the largest reflexive, extensional, equipollent, codivergent bisimulation exists [14], 
hence the well-definedness of =M . We need the reflexivity condition in the existence proof. Without the reflexivity the 
extensional closure of the binary relation {(!τ | !a, !τ | !a) | a ∈ Cg} would be an equipollent, codivergent bisimulation. We 
shall often omit the subscript in =M . The equality =M , introduced in [14], is based on previous studies on the relative 
expressiveness of CCS variants and π variants [16]. The effectiveness of the equality =M has been demonstrated by the 
proof of a number of general results. See [14] for a systematic study. In [19,20,9] the authors studied bisimulation equality 
with explicit divergence, which coincides with the absolute equality.

Using the absolute equality we can formally distinguish two kinds of internal action. An internal action P
τ−→ P ′ is 

a one-step deterministic computation, notation P → P ′ , if P ′ = P . It is a one-step nondeterministic computation, notation 
P

ι−→ P ′ , if P ′ 	= P . A fundamental property about internal actions is that P0
τ−→ P1

τ−→ . . .
τ−→ Pk = P0 implies P0 →

P1 → . . . → Pk [14]. This property implies that if Q 0 = P0 and Q 0
λ−→ Q ′ is bisimulated by the sequence P0

τ−→ P1
τ−→

. . .
τ−→ Pk

λ−→ P ′ , then P0 → P1 → . . . → Pk .
Let’s see some examples definable in the CCS model [33]. The recursion term μX .T is defined by the following transition 

rule

T {μX .T /X} λ−→ T ′

μX .T
λ−→ T ′

.

The first example shows the difference between our equality and the weak congruence [33]. One has a.(A +τ .B) 	=CCS

a.(A +τ .B) + a.B even though the two processes are weakly congruent. The reason is that a.(A + τ .B) + a.B a−→ B is not 
bisimulated by a.(A +τ .B) a−→ A +τ .B τ−→ B since A +τ .B 	=CCS B . The second example exhibits the subtlety of codiver-

gence. Let Q be μX .(τ .(a | X) + τ + τ .X) and P be μX .(τ .(a | X) + τ ), definable in CCS. We remark that Q
τ−→ Q and 

P ′ 	=CCS P whenever P
τ=⇒ P ′ . The process Q can engage in an infinite number of deterministic computation steps whereas 

P cannot do any deterministic computation. There is no codivergent equipollent bisimulation R such that PRQ . The pro-
cesses P , Q are different in the same way a terminating computation is different from a nonterminating computation. The 
process P can engage in an infinite sequence of nondeterministic computations. By the bisimulation property every process 
equal to P must bisimulate this infinite sequence. However the bisimulation property says nothing about infinite sequences 
of deterministic computation. The codivergence property takes care of that.

2.2. Submodel relationship

The equality for computational objects (processes, programs) of a model is the most fundamental relationship in com-
puter science. Such equality is unique from a mathematical logic point of view. Another fundamental relationship in 
computer science is the relative expressiveness between models. The simplest such relationship is the submodel relation-
ship. Intuitively we regard M as a submodel of N if for every M-process P there is some N-process Q such that Q is 
equal to P from the viewpoint of a bisimulation defined between M-processes and N-processes; and moreover the equality 
=M should be a subrelation of the equality =N under this interpretation. The reflexivity condition of Definition 4, which 
is a relation on one model, is generalized to conditions on processes from two different models.

Definition 5. A binary relation ∝ from M-processes to N-processes is total if for every M-process P there is an N-process 
Q such that P ∝ Q . It is sound if Q =N Q ′ whenever P =M P ′ and P ∝ Q and P ′ ∝ Q ′ .
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If P ∝ Q for a subbisimilarity ∝, Q is called an interpretation of P . Totality says that every M-process gets interpreted. 
The soundness condition forces an interpretation to be syntax independent. In the largest subbisimilarity ∝; =N , which is 
the composition of ∝ with =N , if Q is an interpretation of P and P ′ = P then Q is an interpretation of P ′ as well. Both 
totality and soundness are preliminary.

Definition 6. A binary relation ∝ from M-processes to N-processes is a subbisimilarity if it is a total, sound, extensional, 
equipollent, codivergent bisimulation.

Every subbisimilarity is fully abstract. This is the next lemma.

Lemma 2.1. If P ∝ Q and P ′ ∝ Q ′ , then P =M P ′ if and only if Q =N Q ′ .

Proof. The equality Q =N Q ′ implies the equality P =M P ′ since the composition ∝; =N ; ∝−1 is a subbisimilarity. �
We write M � N if there is a subbisimilarity from M to N . The notation M � N is the formal statement that M

is a submodel of N . For example it is easy to see that CCS � π . We write M � N if M � N and N 	� M. In [14]
the subbisimilarity relationship has been used to classify the relative expressiveness of several well-known models. For the 
relationship between the expressiveness criterion defined by the subbisimilarity and other criteria proposed in literature [42,
26], confer [14].

3. From computation models to interaction models

The interaction models based on Turing machines [56], recursive functions [48,53], and the λ-calculus [2] are defined 
in this section. The basic idea is to turn the input and output meta operations of the computation models into actions 
admitted within models. These actions are interactions between processes that pass messages through channels. To enable 
interactions the concurrent composition operator is admitted; and to disable interactions the scope operator is introduced. 
We fix the following syntactical classes for all our models.

• Cg is the set of global channels, ranged over by a, b, c, d, e, f .
• Cp is the set of private channels, ranged over by l, m, n, o, p, q.
• Cv is the set of channel variables, ranged over by u, v, w, x, y, z.

We write for example p̃ for a finite sequence of private channels. The set Cg ∪ Cp ∪ Cv will be ranged over by μ, ν , and the 
set Cg ∪ Cp by α, β . It is worth pointing out that in [14] the private channels and the global channels are syntactically the 
same, following the standard practice in process algebra [33,35,51]. Consequently the extensionality condition is supposed 
to be closed under the scope operator. In the present paper this is unnecessary since the private channels are syntactically 
distinct from the global channels.

In the rest of the paper we shall write λ and its decorated versions for both internal and external actions of a model. 
Throughout the paper N denotes the set of natural numbers, and i, j, k and their decorated versions range over N.

3.1. From Turing machines to interactive machines

The simplest interaction model is based on Turing machines. A number of researchers have studied interactive versions 
of the Turing machines and their expressiveness, see the papers [24,31,3] and the references therein. Suppose every in-
teractive Turing machine, ITM for short, has an input tape, an output tape and a work tape. It has a finite set of states, 
and a finite set of transition rules. We assume that all ITMs use the same alphabet {0, 1, �}. A configuration is a 7-tuple 
(p, s0, s1, s2, h0, h1, h2), where p is the state, s0, s1, s2 ∈ {0, 1}∗ are the strings written on the input tape, the work tape and 
the output tape, h0, h1, h2 are the positions of the readers on the input tape, the work tape and the output tape. An ITM is 
defined by a finite transition function like a classic Turing machine. Each entry of the transition table can be seen as a rule

(p, e0, e1, e2) → (p′, e′
1, e′

2, H0, H1, H2).

It says that if the machine is in state p and the three readers are reading the cells containing the tokens e0, e1, e2 respec-
tively, then the machine overwrites e1, e2 with e′

1, e
′
2 respectively, move the readers according to H0, H1, H2, and turns into 

state p′ . If the machine is in the configuration M to which one transition rule applies, then it turns to the unique configu-

ration M ′ obtained from M by the rule. This one step computation is denoted by M
τ−→ M ′ . An ITM differs from a classic 

Turing machine in that they can interact with each other. An ITM is connected to a finite number of global and/or private 
channels. Different ITMs are connected through channels. For each channel α an ITM is connected to, the ITM contains 
finitely many input transitions of the form p α−→ p′ and/or finitely many output transitions of the form p α−→ p′ . An input 
transition may induce for example transition M

α(s)−→ M ′ , which says that the ITM in configuration M can input the string 
118



Y. Fu Theoretical Computer Science 897 (2022) 114–134
s at channel α and write s on the input tape and the configuration turns into M ′ . An output transition may induce for 
example transition M

α(s)−→ M ′ , which says that the ITM in configuration M can output s through channel α, where s is the 
string on the output tape.

A machine system M is either a machine configuration, or is a concurrent composition of the form M ′ | M ′′ , or is of the 
form (p)M ′ . In (p)M ′ the private channel p is closed. A private channel is open if it is not closed. The operational semantics 
of the machine systems is completed by the following interaction rules

M0
α(s)−→ M ′

0 M1
α(s)−→ M ′

1

M0 | M1
τ−→ M0 | M ′

1

M0
α(s)−→ M ′

0 M1
α(s)−→ M ′

1

M0 | M1
τ−→ M0 | M ′

1

. (3)

The external actions α(s) and α(s) are complementary, and they cooperate to achieve an interaction. Every interaction 
model studied in this paper has interaction rules like the ones in (3) with its own complementary external actions. We 
shall not mention these rules either when defining a new model.

We denote this interaction model by T . A T -process is a machine system in which all private channels are closed. It is 
easy to see that every T -process is equal to a T -process of the form

(̃p)(M0 | M1 | . . . | Mk), (4)

where M0, M1, . . . , Mk are interactive Turing machines that contain no occurrences of the concurrent composition operator. 
From the viewpoint of implementation this is a fine property not enjoyed by the other models of this paper.

3.2. From recursive functions to the value-passing calculus

The value-passing calculus [27,28,12], denoted by R in this paper, is the interactive recursive function model. The 
contents of communications in R are numbers. Formally we use Presburger Arithmetic [46] to reason about numbers. 
Presburger Arithmetic is the first order theory of arithmetic with three functional constructors (the nullary function “0”, the 
unary function successor “+1”, and the binary function addition “+”) and two relations (“=” and “<”). We will write r, s, t
for Presburger terms and x, y, z for natural number variables. We will write � ϕ to mean that the Presburger formula ϕ
is provable. It is well known that the provability of the first order formula in Presburger Arithmetic is decidable [46]. The 
syntax of R is given by the following grammar.

S, T := 0 | α(x).T | α(t).T | S | T | (p)T | [ϕ]T | !α(x).T .

The nil process 0 and the composition term T | T ′ are standard. A trailing 0 is omitted. A prefix term is either an input 
term of the form μ(x).T or an output term of the form μ(t).T . In the conditional term [ϕ]T , often denoted by if ϕ then T , 
the expression ϕ is a Presburger formula. The semantics of R is defined by the structural and interaction rules plus the 
following.

α(x).T
α(i)−→ T {i/x} α(t).T

α(i)−→ T
� t = i T

λ−→ T ′

[ϕ]T
λ−→ T ′

� ϕ

!α(x).T
α(i)−→ T {i/x} | !α(x).T

(5)

The input guarded replication term !α(x).T is a typical way of introducing recursively defined processes. The replication 
rule (5) is standard. We shall not mention it again when defining a new model. A detailed exposure of R can be found 
in [12].

3.3. From the λ-calculus to the higher order process calculus

Church’s λ-calculus [2] is a prototypical higher order model for functional computation. It is of higher order in that an 
input to a λ-term is a λ-term and the value of a λ-term evaluation is a λ-term. Its syntax is defined by the grammar

M := x | λx.M | MM ′.

A λ-term is either a variable x, or an abstraction term λx.M , or an application term MM ′ . The variable x in λx.M is bound. 
A variable is free if it is not bound. A term is closed if all variables appearing in it are bound. The operational semantics 
most relevant in the present setting is that of the lazy λ-calculus [1], defined by the following two rules:

(λx.M)N → M{N/x},
MN → M ′N, if M → M ′.
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The equivalence closure of the one step lazy reduction → is the β-conversion =β .
We intend to promote the lazy λ-calculus to an interaction model in which the content of a communication is a binary 

abstraction [49,58]. The reason that we confine to binary abstractions is that they are the natural generalization of λ-terms. 
Intuitively in a binary abstraction the first parameter can be instantiated by a channel through which a ‘λ-term’ can be im-
ported and the second parameter can be instantiated by a channel through which the result of evaluation can be delivered. 
Under this interpretation a λ variable can be seen as an abstraction variable. This will become clear in Section 3.4 where 
λ-terms get interpreted as binary abstraction. Let V be the set of abstraction variables, ranged over by U , V , W , X, Y , Z . The 
set of L-terms is generated by the following grammar:

S, T := 0 | μ(X).T | μ[A].T | S | T | (p)T | A(μ,ν) | !μ(X).T ,

A := X | (x, y)T .

An abstraction is either an abstraction variable or of the form (x, y)T . In (x, y)T the channel variables x, y are bound. A 
channel variable is free if it is not bound. If y does not appear in T , we abbreviate (x, y)T to (x)T . If A = (x, y)T , then the 
instantiation of A at μ, ν is A(μ, ν) = T {μ/x, ν/y}. If A = (x)T , then the instantiation A(μ) of A at μ is A(μ) = T {μ/x}. 
We will write Aμ,ν or even Aμν for A(μ, ν) and Aμ for A(μ) to improve readability. The set of abstractions is ranged over 
by A, B, C, D . The abstraction variable X in μ(X).T is bound. A (abstraction) variable is free if it is not bound. We shall 
abbreviate μ(X).T to μ.T if X does not appear in T . Similarly we shall abbreviate μ[0].T to μ.T .

In the standard semantics for higher order models, there are transitions that look like

(p)(S |a[. . . c[_].p[_] . . .]) |a(X).T
τ−→ (p)(S | T {. . . c[_].p[_] . . . /X}), (6)

where the global channel c does not appear in T . The scope operator (p) is extended to cover T after the interaction, which 
does not really make sense if one thinks of p as a local physical line. Another problem is that having landed in T the 
component c[_].p[_] . . . can communicate to a process at channel c and can secretly pass information to its original host 
through the private channel p. The party that has received c[_].p[_] . . ., which is T , has absolutely no control over either of 
the actions. From the point of view of T the term . . . c[_].p[_] . . . is more like a spy than a useful piece of information. In 
retrospect higher order communications should be defined in such a way to avoid situations as described in (6) from ever 
happening in the first place. A receiving party should have complete control over the messages it has obtained from another 
party. For this purpose we impose on L the following conditions.

• There are no free channel variables in any abstraction that appears in an output prefix.
• There are no open private channels in any abstraction that appears in an output prefix.
• There are no global channels in any abstraction that appears in an output prefix.

In L an abstraction generalizes a closed λ-term.
Using the action set {α(A), α(A) | α ∈ Cg ∪ Cp} ∪ {τ }, the operational semantics of L is defined by

α(X).T
α(A)−→ T {A/X} α[A].T α(A)−→ T

.

An L-process is an L-term in which all channel variables and abstraction variables are bound and all private channels 
are closed. We write L, M, N, O , P , Q for processes.

3.4. L as the λ-calculus for concurrency

Given an injective function from the set of λ variables to V , a λ-term M is interpreted as an abstraction by structural 
induction, which is a more straightforward interpretation than the one in the π -calculus [34].

�x� = X,

�λx.M� = (uv)u(X).v[�M�],
�MN� = (uv)(mq)(�M�m,q |m[�N�].q(Z).Zu,v).

The process �M�a,b is a “function” that inputs a “λ-term” at channel a and outputs the result “λ-term” at channel b. The 
structural aspect of the interpretation is enforced by the following simple lemma.

Lemma 3.1. �M{N/X}� ≡ �M�{�N�/X}.

The interpretation is also semantically correct, guaranteed by the following facts. Notice that since we do not define 
reductions for abstractions, we can only talk about reduction of �M� in terms of that of �M�a,b for arbitrarily chosen a, b. 
As pointed out already, �M�a,b abbreviates �M�(a, b).
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Lemma 3.2. Suppose P | 0 ≡ P ≡ 0 | P for all P , and (p)P ≡ P for all P . For closed λ-terms M, N, M → N if and only if �M�a,b →→≡
�N�a,b.

Proof. Let a closed λ-term M be for example of the form (λx.L)M1 M2, where the application is associative to the left. Now

�M�a,b ≡ (m2q2)
(
. . . (m1q1)(�λx.L�m1,q1 |m1[�M1�].q1(Z).Zm2,q2) . . .

)
→ (m2q2)

(
. . . (m1q1)(q1[�L�]{�M1�/X} |q1(Z).Zm2,q2) . . .

)
≡ (m2q2)

(
. . . (m1q1)(q1[�L{M1/x}�] |q1(Z).Zm2,q2) . . .

)
→ (m2q2)

(
�L{M1/x}�m2,q2 |m2[�M2�].q2(Z).Zm3,q3

)
≡ �L{M1/x}M2�a,b,

where the middle equivalence ≡ is due to Lemma 3.1. �
Lemma 3.3. For closed λ-terms M, N, M =β N implies �M�a,b =L �N�a,b.

Proof. In view of Lemma 3.2 this is the Church-Rosser property [2]. �
It is well-known [2] that there is a λ-term encoding �0�, �1�, �2�, . . . , �i�, . . . of the natural numbers and an encoding �_�

of the recursive functions such that �f��i� →∗ �f(i)� if f(i) is defined, and that �f��i� →→ . . . diverges if f(i) is undefined. 
Given global channels a, b we define the L-processes

a(i) ≡ a[��i��], (7)

λa,b(f) ≡ ��f��a,b. (8)

It is straightforward to verify that if f(i) = j then

λa,b(f) |a(i)
ι−→ b( j) (9)

and if f(i) is undefined then

λa,b(f) |a(i)
ι−→→→ . . . . (10)

4. Thesis of interaction

The concurrent composition operator is an enabling combinator that allows processes to interact on shared channels. No 
extra computational meaning should be assigned to this operator. The composition operator is a spatial operator. It would 
be much less useful without any hierarchical structure in space. Private channels together with the scope operator are in-
troduced to create space hierarchy. In addition to these two operators we need a sequential operator, a conditional, and 
recursion to define Turing computation. As we have said in Section 1, the models we consider in this paper all have the 
composition operator and the localization operator. All other operators add only computational power to the models. As a 
consequence all references to channels are computational. If we could define an interaction model in which the computa-
tional aspect of channel reference is formalized within the model, it is likely that we get a universal model. This will be the 
model V defined in Section 4.2.

4.1. Initial model

The starting point to formulate a thesis for interaction is to turn the computable functions into an interaction model. 
This model is called computability model and is denoted by C [14]. The C-processes are generated by the grammar

P := 0 | 
 | F b
a (f(x)) | a(i) | P | P .

The process 
 can only diverge. The functional process F b
a (f(x)) inputs a number, say i, at channel a, and outputs f(i) at 

channel b if the computable function f is defined at i. The output process a(i) simply outputs i at channel a. The semantics 
is defined by the following rules, in which f(i)↑ means that f is undefined on i.



τ−→ 
 F b

a (f(x))
a(i)−→ b( j)

if f(i) = j

a(i) b a(i)
if f(i)↑
a(i) −→ 0 Fa (f(x)) −→ 
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Definition 4 can be readily applied to the C-processes. In C the absolute equality has a simple characterization. Let 
the structural congruence ≡C be the least equivalence and congruence relation that satisfies the following equalities: (i) 
0 | P ≡C P , (ii) P | Q ≡C Q | P , (iii) O  | (P | Q ) ≡C (O  | P ) | Q , (iv) 
 | 
 ≡C 
, and (v) F b

a (f(x)) = F b′
a (f(x)) if f(x) is nowhere 

defined. In [14] it is proved that the absolute equality =C coincides with the structural congruence ≡C . This is important 
in the context of this paper because it greatly simplifies the proof of soundness statements of the form C � M. The 
simplification is due to the fact that it is easy to show that a translation is structural. We shall not prove any soundness 
claim in this paper.

4.2. Universal model

The model C introduces a minimal expressive power on the interaction models, the content computability. In the other 
direction the maximal interaction model imposes a limit, which we call channel computability, on the power of all interaction 
models. The maximal model, or universal model V is an extension of the value-passing calculus R of Hoare [29] and 
Milner [33]. It differs from R in that V has a channel function κ : N → Cg that assigns a distinct index to each global 
channel in a bijective way. For a number i we will write κi for κ(i). The channel function is meant to capture the intuition 
that global channels must be accessed in a computable fashion. The function κ gives rise to an enumeration κ0, κ1, . . . of 
the global channels. When we write a global channel a for instance we mean that a = κk for some index k. A process may 
refer to a as long as it knows a’s index. The syntax of V is almost the same as R, except that in V the prefix terms are 
of the form κz(x).T and κz(t).T . In the following definition of grammar the subscript h is either a number or a number 
variable.

S, T := 0 | κh(x).T | κh(t).T | S | T | (p)T | if ϕ then T | !κh(x).T .

If h is a number say 8, κh is the channel with index 8, or the 8-th channel. If h is a number variable say x, κh can be 
fixed by instantiating x by a number. The semantics of V are the same as that of R. We will prove that the processes 
definable in V can simulate the channel-passing communication mechanism. We get a better understanding of the channel 
computability from the following abbreviation.

κe(x).T = (p)(p(e) | p(z).κz(x).T ),

κe(t).T = (p)(p(e) | p(z).κz(t).T ),

where p, z are fresh, and e is a number expression. Now a(x).κdecode(x)(t) for instance decodes the number received at 
channel a, and if the decoded number is some k, it outputs the value of t at a channel κk whose index is not known to any 
eavesdropper. The two-leg conditional term if ϕ then S else T is defined by if ϕ then S | if ¬ϕ then T . For clarity the term

if t = i0 then T0 else if . . . else if t = ik then Tk

will be written as case t of i0 ⇒ T0; . . . ; ik ⇒ Tk end case.
The absolute equality of the maximal model is faithful over the extensional equality of the computable functions. This is 

the characterization given by the next lemma [12].

Lemma 4.1. The absolute equality =V is the largest codivergent bisimulation R such that the following are valid whenever PRQ and 
λ 	= τ .

1. If P λ−→ P ′ then Q =⇒ Q ′′ λ−→ Q ′ for some Q ′′, Q ′ such that PRQ ′′ and P ′RQ ′ .
2. If Q λ−→ Q ′ then P =⇒ P ′′ λ−→ P ′ for some P ′′, P ′ such that P ′′RQ and P ′RQ ′ .

4.3. Models inbetween

We have said enough motivations for the thesis, and we have defined the minimal model C and the maximal model V . 
Let’s spell out the thesis.

Thesis of Interaction. ∀ M. C �M �V .

The formulation of the thesis depends crucially on the model independence of the submodel relationship, equivalently of 
the absolute equality. The coincidence between =C and ≡C points out that the absolute equality on the initial model is 
completely determined by the extensional equality of the computable functions. According to Lemma 4.1 in the maximal 
model the absolute equality is the interactive expansion of the extensional equality of the computable functions. Thesis of 
Interaction forces the equality of every interaction model to be faithful over the extensional equality of computation.
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In C all implementation details are suppressed. All deterministic computations are caused by 
, whereas all interactions 
at global channels induce nondeterministic computations [14]. In V the computable functions are explicitly programmed, 
the executions of the programmes give rise to deterministic computations. When confined to internal actions, the Thesis of 
Interaction provides a formulation of the Church-Turing Thesis.

We call M complete if C �M and sound if M �V . The model C is the starting point for the theory of definability of 
M, and V provides the theory of unsolvability. We can now state the main result of the paper.

Theorem 4.2. C �T �R �V and C �L �R �V .

Proof. We sketch the proof. It is obvious that R �V . No R-process can interpret the V -process a(x).κx(0), hence V 	�R. 
The proof of the submodel relationship T � R is a formality. It is essentially the encoding of the Turing machines by the 
recursive functions. The negative result R 	� T is due to the fact that the replication process !a(x).b(x) is not equal to any 
communicating sequential process in the form of (4). The completeness of T is clear. The completeness of L is proved in 
Section 3.4, see the processes defined in (7) and (8) and the reductions in (9) and (10). The proof of L � R will be given 
in Section 5. Neither T �C nor L �C because (p)(p | p.b | p.c) cannot be interpreted by any C-process. �
5. Interpreter

This section serves two purposes. One is to introduce the important technique of constructing an interpreter of one 
model in another. We explain the technique by designing a V -process that interprets L. The other is to demonstrate how 
to apply this technique to establish submodel relationship. We do this by showing L � R.

For the interpreter to work, there should be a way to translate an L-process to a number, and vice versa. This is what 
Gödel encoding is about.

5.1. Gödel index

For each k let 〈_, . . . , _︸ ︷︷ ︸
k

〉 : N × . . . × N︸ ︷︷ ︸
k

→ N be an effective tupling function. The corresponding projection functions are 

denoted by (_)k
0, . . . , (_)k

k−1. We often write zi for the i-th projection when k is understood from context. For notational 
clarity we even abbreviate ((z)k

i )
k′
j to zi, j . For every k we define rk, dk by

rk(z)
def=

{
0, if z = 0,

i, if 1 ≤ i ≤ k and ∃ j.z = k ∗ j + i,

dk(z)
def=

{
0, if z = 0,

j, if z = k ∗ j + rk(z).

The Gödel encoding is based on two bijections. The function ς : V → N provides a countable enumeration {X0, X1, . . .} of 
the abstraction variables. The bijective map σ : Cv ∪ Cg ∪ Cp → N is defined by

σ(μ) =
⎧⎨
⎩

3i, if μ = xi,

3i + 1, if μ = κi,

3i + 2, if μ = pi,

(11)

assuming an enumeration of the private channels {p0, p1, . . .} and an enumeration of the channel variables {x0, x1, . . .}, and 
making use of the channel function κ . The encoding function �_�f for terms is defined as follows.

�0�f
def= 0,

�μ(X).T �f
def= 5 ∗ 〈σ(μ),ς(X), �T �f〉 + 1,

�μ[A].T �f
def= 5 ∗ 〈σ(μ), �A�f, �T �f〉 + 2,

�S | T �f
def= 5 ∗ 〈�S�f, �T �f〉 + 3,

�(p)T �f
def= 5 ∗ 〈σ(p), �T �f〉 + 4,

�A(μ,ν)�f
def= 5 ∗ 〈σ(μ),σ (ν), �A�f〉 + 5,

and

�A�f
def=

{
2 ∗ ς(X), if A = X,

2 ∗ 〈σ(x),σ (y), �T � 〉 + 1, if A = (x, y)T .
f
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Sn = (pq)!n(z). case r5(z) of
1 ⇒ case r3(d5(z)0) of 1 ⇒ κd3(d5(z)0)(x).n([x/d5(z)1]d5(z)2);

2 ⇒ li .p(z)
end case;

2 ⇒ case r3(d5(z)0) of 1 ⇒ κd3(d5(z)0)(d3(d5(z)1)).n(d5(z)2);

2 ⇒ lo .q(z)
end case;

3 ⇒ n(d5(z)0) |n(d5(z)1);

4 ⇒ m(u).
(
m(u +3) | (o)(In(u) | O ut(u) |n([u/d5(z)0]d5(z)1))

)
;

5 ⇒ n ([d5(z)0/d2(d5(z)2)0,d5(z)1/d2(d5(z)2)1] d2(d5(z)2)2)

end case.

In(y) = p(z).if d5(z)0 = y then Bi else Fi ,

Bi = mi(v).if v > 0 then l′.mi(v).In(y) else l.I(z),

Fi = mi(v).pz.mi(v+1).l′.mi(v).if v > 1 then l′.mi(v−1).In(y) else l,

I(z) = o(x).li .(n([x/d5(z)1]d5(z)2) | In(y)).

O ut(y) = q(z). if d5(z)0 = y then Bo else Fo ,

Bo = mo(v).if v > 0 then l′.mo(v).O ut(y) else l.O (z),

Fo = mo(v).qz.mo(v+1).l′.mo(v).if v > 1 then l′.mo(v−1).O ut(y) else l,

O (z) = o(d5(z)1).lo .(n(d5(z)2) | O ut(y)).

Li = li .li .Li ,

Lo = lo .lo .Lo .

Fig. 1. Simulator Sn .

Given an L-term T , �T �f is the Gödel index of T , and �A�f is the Gödel index of A. For the interpreter to work properly, 
every natural number is understood as the index of some abstraction. If k is not �A�f for any abstraction A, it is deemed as 
an index of (x0, x1)0.

5.2. Interpreter

To talk about Gödel index in L, it suffices to explain how numbers are defined in L. A V -interpreter Iα of L at α inputs 
a number at channel α, interprets it as the Gödel index of some L-process, and then simulates the L-process. The process 
Iα consists of a parser and a simulator and is defined by the V -process

α(x).(lilomimomno)
(

Pn(x) | Sn |mi(0) |mo(0) |m(kx) | Li | Lo
)
.

The locks Li, Lo are necessary to prevent the simulator Sn from running into deadlock. The numbers 0, 0, kx provide the 
initial values of three counters accessible at mi, mo, m respectively. The expression kx stands for 3 plus the maximum of the 
indices of the private channels appearing in x, which can be easily calculated from x.

The parser Pn(x) parses a number imported at channel α to see if it is a Gödel index of some L-process. It needs to 
check the following:

1. Are all channel variables bound?
2. Are all private channels closed?
3. Are all abstraction variables bound?

If the input number is the Gödel index of some L-process P , Pn(x) sends the index to the simulator through channel n. 
The operations performed by Pn(x) are arithmetical. So it is definable in L by the completeness of L.

The simulator Sn defined in Fig. 1 receives a Gödel index from the parser at channel n and simulates the operations of 
P on-the-fly. For clarity the terms In(y) and O ut(y) are defined recursively. They can be easily implemented in terms of 
the replication operator. The simulator makes use of the channel function to simulate transmissions at global channels. The 
simulation of an interaction at a private channel is a bit involved. Each term of the form (q)T is translated to a V -term, 
called a dominion, of the form

(o)
(
(l′l)In(u) | (l′l)O ut(u) |n

([u/ς(q)]�T �f
))

. (12)

We need to explain the notation [u/ς(q)]�T �f in some details. Recall that the number �T �f is defined structurally. The 
number [u/ς(q)]�T �f is defined like �T �f , except that in the structural definition of the former the number ς(q) is replaced 
by the number u. This is clearly computable. The operation [u/ς(q)] maps the number �T �f onto the number [u/ς(q)]�T �f .
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Different dominions make use of the same symbol o for private channels with disjoint scopes. In other words all private 
channels of an L-process are translated syntactically to o. Since the simulator Sn can only refer to a finite number of 
symbols, this is essentially the only option. The component n([u/ς(q)]�T �f) invokes the simulator Sn recursively, which 
may take [u/ς(q)]�T �f out of the dominion it initially stays. The continuation of [u/ς(q)]�T �f typically wanders through 
different dominions. The question is then how to ensure that the private channel q appearing in T and any continuation of T
gets interpreted correctly. The solution is to attach to every dominion a distinct number u. If a continuation of [u/ς(q)]�T �f
tries to communicate at the private channel o that is the interpretation of q, it must first of all move to the dominion where 
n([u/ς(q)]�T �f) was produced in the first place, and communicate through the private channel o effective in that dominion. 
The movements have to be regulated so that no deadlock can occur.

We now explain the execution of Sn in some detail. After receiving the index z of an L-process, Sn checks the type of 
the process.

1. If r5(z) = 1 then the number codes up an input process. There are two subcases:
(a) r3(d5(z)0) = 1. That is the process that intends to input something at the global channel κd3(d5(z)0) . If h is received 
at channel κd3(d5(z)0) , then Sn simulates the process with the index [h/d5(z)1]d5(z)2 obtained by replacing d5(z)1 by h
throughout the index d5(z)2.
(b) r3(d5(z)0) = 2. This is the process ready to input something at the private channel with code number d3(d5(z)0). 
This is reciprocal to Case 2(b).

2. If r5(z) = 2, it is an output process. There are two cases:
(a) r3(d5(z)0) = 1. In this case the process is ready to output the index of an abstraction at the global channel κd3(d5(z)0) . 
After simulating this action, Sn is invoked with the index d5(z)2.
(b) r3(d5(z)0) = 2. In this case a private channel is used to communicate a piece of information. The simulator sets 
the output lock Locko and then starts locating the dominion in which the private channel gets interpreted. Before the 
output lock is released no other output actions at any private channel will be considered by the simulator. This is fine 
in an interleaving semantics, and would prevent the two consecutive output actions at private channels defined by say 
p[A].q[B].T from being simulated in wrong order. The locating procedure interacts with a process of the form O ut(u), 
where u is the number associated to a dominion and it appears as an index for a distinct private channel. The simulator 
checks if O ut(u) is in the right dominion, that is if d5(z)0 = u. If not Sn continues to interact with another process of 
the form O ut(_). This procedure should be neither divergent nor deadlocked. The guard l′ blocks O ut(u) with wrong u
once it has been examined. That removes the possibility of O ut(u) being examined again and again. The right O ut(_)
must be eventually reached. When that happens, the blocked O ut(_)’s are freed one by synchronising with the guard 
l′ . The number stored at mo indicates how many O ut(_)’s are still blocked. The lock Locko is released at the same time 
the last blocked O ut(_) is released, which is indicated by a synchronization at the private channel l. Had Locko been 
released while some O ut(_)’s are blocked, it would be possible that a deadlock occurs. After the right dominion is 
found the simulator can simulate the output action by performing o(d5(z)1) of O (z) in that dominion.

3. If r5(z) = 4 then the number codes up a localization process. A dominion is declared to which is attached a number 
larger than any number associated to any dominion created so far. In this way it is guaranteed that every dominion is 
associated with a distinguished number.

4. The interpretations in the case of r5(z) = 3 and r5(z) = 5 are simple.

This completes the explanation of the simulator.

5.3. Correctness

An output action says a[A] of an L-process is bisimulated by the output action a(�A�f) of the interpretation. Once the 
deadlock prevention mechanism defined by O ut(y) and In(y) is understood, the interpretation is easy to justify. Formally 
the correctness of the interpreter and the submodel relationship L �V is proved in one go. By letting

�P�V = (p)(p[�P�f] |I p), (13)

we define a binary relation �_�V = {(P , �P�V ) | P is a process in L}. Let ∝V be the composite relation �_�V ; =V= {(P , Q ) |
�P�V =V Q }. We now argue that ∝V is a subbisimilarity from L to V .

A context C[. . .] is defined as follows: (i) A hole [_] is a context; (ii) (p)C[_] is a context if C[_] is; (iii) C[_] | C ′[_] is a 
context if C[_] and C ′[_] are. If C[. . .] is a context with k holes, C[T1, . . . , Tk] is the term obtained by filling the holes by 
T1, T2, . . . , Tk in that order. We define inductively a relation R between L-processes and V -processes in terms of contexts. 
Starting from the empty set, we include a pair (P , Q ) into R if the following statements are valid:

1. P = C[Rk1 , . . . , Rk j ] for some context C[_] in L and some L-terms Rk1 , . . . , Rk j .

2. Q = (̃lm̃no) 
(

Sn |mi(h) |mo(h) |m(g) | Li | Lo | (pq)D[Tk1 , . . . , Tk j ]
)

with ̃l = lilol1l0, m̃ = mimom, D[_] being some context 
in V and Tk1 , . . . , Tk being some V -terms.
j
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3. D[_] is obtained from C[_] as follows: If C[_]=(q′)C ′[_] then, for some ki′ ∈ {i1, . . . , i j}, D[_]=(o)(In(ki′ ) | O ut(ki′ ) | D ′[_]), 
and D ′[_] is obtained from C ′[_] in the same way. If C[_]=C0[_] | C1[_] then D[_]=D0[_] | D1[_] and D0[_], D1[_] are 
obtained from C0[_], C1[_] in the same way.

4. For each ki′ ∈ {k1, . . . , k j}, Tki′ = n[[ki′/σ (q′)]�Ski′ �f] with appropriate q′ .

Clearly ∝V is equal to the composition R; =V . It is equipollent because the capacity to perform actions at a particular 
global channel is preserved by the interpreter. Since all arithmetic calculations are state-preserving operations and the 
encoding does not introduce any new divergence, it is both codivergent and bisimular. It is extensional because

(_)(_ |mi(h) |mo(h) | O ) | (_)(_ |mi(h
′) |mo(h

′) | O ′)

is equal to (_)(_ | mi(h+h′+1) | mo(h+h′+1) | O ′′) for a suitable term O ′′ . The soundness condition is also met because every 
number is the index of some abstraction. Hence the soundness of L.

Theorem 5.1. L �V .

An interesting corollary of the existence of a universal process for V is the following.

Corollary 5.2. V is equivalent to a variant of V in which the set of symbols for private channels is finite.

This is a comfortable property from the viewpoint of implementability. Is it enough to have just two symbols for private 
channel? The answer is unknown at the moment.

5.4. L is a submodel of R

Much of the programming for the V -interpreter of L can be carried out in R. What cannot be done in R is for one 
process to interpret whatever global channels that appear in an L-process. However if our goal is to show that L is a 
submodel of R, it is not necessary to ask for a single R-process to play the role of a universal process. What would be 
sufficient is a family of processes that collectively play the role of a universal process [11]. More precisely for every finite set 
G of global channels, we need a local interpreter I p,G that is capable of interpreting all L-processes containing only global 
channels in G . The process I p,G is defined by modifying the definition of I p . In I p,G the channel function is unnecessary 
because I p,G knows all the global channels in G . Using I p,G an encoding of L in R can be defined in the fashion of (13), 
and a subbisimilarity from L to R can be constructed.

Theorem 5.3. L �R.

The family of local interpreters I p,G is uniform in that it is a single process parameterized over G . Consequently the 
property stated in Corollary 5.2 also holds of R. In fact the finite-private-channel property is valid for any model with a 
local interpreter.

5.5. The soundness of the π -calculus

Looking for the “λ-calculus” of concurrent computation has been an issue in concurrency theory. Early works [40,4,54,55]
addressed the issue by introducing higher order mechanism into CCS [33]. A crucial shift from the functional paradigm to 
an object-oriented paradigm, initiated by the work of [8], was fully investigated by Milner, Parrow and Walker with the 
π -calculus [35]. This is the channel-passing calculus, known as the π -calculus. The π -terms are generated by the following 
grammar.

S, T := 0 | π.T | S | T | (p)T | !μ(x).T | !μ(p).T ,

π := μ(x) | μb | pμ | ap | ay | xy | xp,

where μ(p).T abbreviates (p)μp.T . The channel variable x in both μ(x).T and !μ(x).T is bound, and the private channel p
in both (p)T and !μ(p).T is closed. We call μ in μ(x), μb, p in pμ, a in ap, ay, and x in xy, xp, subject names. A π -process 
P is a π -term satisfying two conditions: (i) All channel variables are bound and all private channels are closed; (ii) The 
unique identifier condition. To define the second condition, we need to define the concurrent components of a term. A term 
S is a concurrent component of a term T if either S ≡ T , or T ≡ (q)T ′ such that S is a concurrent component of T ′ , or 
T ≡ T1 | T2 such that S is a concurrent component of T1 or a concurrent component of T2. We say that a term T satisfies 
the unique identifier condition if whenever ap.R respectively xp.R is a concurrent component of T , then the following 
statements are valid: for every other concurrent component T ′ of T ,
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1. either T ′ does not contain any occurrence of p respectively x,
2. or T ′ is of the form p(z).R ′ respectively x(z).R ′ and in R ′ all local channels respectively channel variables apart from p

respectively x are closed respectively bound.

Our version of the π -calculus differs from the standard one [35] mainly in that the output prefixes are constrained so that 
there is essentially no potentially insecure scope extrusion like in

(p)(ap.R |bp.S) |a(x).T
τ−→ (p)(R |bp.S | T {p/x}),

where an action of ap.R reveals the private channel p to T without the consent of pb.S . Name extrusion is still possible. 
Bearing in mind that (p)(ap.R | pc.S | S ′) = a(p).(R | pc.S) | S ′ whenever p does not appear in S ′ , the unique identifier condi-
tion says that essentially all name extrusions are induced by terms of the form a(p).R where the use of the private channel 
p is restricted to R . As far as we know this form of name extrusion is sufficient in applications.

The action set is {αβ, pβ, αb, α(p) | α, β ∈ Cg ∪ Cp, b ∈ Cg , p ∈ Cp} ∪ {τ }. The labeled transition semantics is defined by 
the structural, the composition, the replication rules and the following rules, where � := μ(x) | μ(p).

α(x).T
αβ−→ T {β/x} αβ.T

αβ−→ T

T
αp−→ T ′

(p)T
α(p)−→ T ′

S
α(p)−→ S ′ T

αp−→ T ′

S | T
τ−→ (p)(S ′ | T ′)

S
αp−→ S ′ T

α(p)−→ T ′

S | T
τ−→ (p)(S ′ | T ′)

� .T
λ−→ T ′

!�.T
λ−→ T ′ | !�.T

.

The completeness of the π -calculus is proved in [14]. We remark that our unique identifier condition is inconsequen-
tial as far as the completeness proof is concerned. The soundness of the π -calculus can be established by recycling the 
soundness proof for L.

Theorem 5.4. C � π �V .

The negative result V 	� π is proved in [14]. See Section 6 for a more general account.

6. Negative results

We now prove some negative results concerning the submodel relationship. The material in this section is from [15].
We first prove a general negative result about the non-interpretability in the π -calculus. Suppose D = {�0�a, �1�a,

�2�a, . . . , �i�a, . . .} is an infinite set of processes in some model M such that i 	= j implies

�i�a 	= � j�a. (14)

We assume that for every i the process �i�a can do one and only one action, which is an output action at channel a, and 
turns into a process equivalent to 0 after the action. In other words,

�i�a
a(̂i)−→= 0, (15)

where ̂i is the message released by �i�a . There is no specific requirement on the messages 0̂, ̂1, ̂2, . . . apart from that they 
are pairwise distinct. We require that in M we can define an absorbing process �λx.0�a , a successor process �λx.x+�a , a 
choice process �λx.τ .x++τ�a , and a test process �λx.x 

?
>k�a for each k ∈ ω. For each i ∈ ω each of the processes can carry 

out the input action a(̂i), which is the only action the process can perform. Their operational behaviours are specified as 
follows:

�λx.0�a
a(̂i)−→= 0, (16)

�λx.x+�a
a(̂i)−→= �i+1�a, (17)

�λx.τ .x++τ�a
a(̂i)−→= τ .�i+1�a +τ , (18)

�λx.x
?
>k�a

a(̂i)−→= 0, if i ≤ k, (19)

�λx.x
?
>k�a

a(̂i)−→= �i+1�a, if i > k. (20)

We also require that in M there is a replicated form for each of �λx.0�a , �λx.x+�a and �λx.τ .x++τ�a , denoted respectively 
by �!λx.0�a , �!λx.x+�a and �!λx.τ .x++τ�a . For each i ∈ ω their unique actions are described as follows:
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�!λx.0�a
a(̂i)−→= �!λx.0�a, (21)

�!λx.x+�a
a(̂i)−→= �i+1�a | �!λx.x+�a, (22)

�!λx.τ .x++τ�a
a(̂i)−→= (τ .�i+1�a +τ ) | �!λx.τ .x++τ�a. (23)

Let G be the process �!λx.0�a | �!λx.x+�a | �!λx.τ .x++τ�a . We assume that in M the following semantic equality is valid for 
each k ∈ ω.


 | G = 
 | G | �λx.x
?
>k�a, (24)

where 
 is an M-process whose only action is 
 τ−→ 
. The equality (24) holds because an action of �λx.x 
?
>k�a can be 

bisimulated by either �!λx.0�a or �!λx.x+�a . Our assumption on M is very liberal. It asks for no more than a divergent 
process 
 and a numerical system that validates (24). A concrete example is given in the proof of Theorem 6.2. Before 
continuing, the reader could take a look at the concrete example for intuition.

Theorem 6.1. M 	� π .

Proof. Suppose there were a subbisimilarity I from the M-processes to the π -processes. In what follows we write MIP �

for MIP and P �. Now fix a ∈ Cg . We fix the notations for the interpretations of the M-processes just described. We 
remark that since �i �a for example cannot do any internal action, by codivergence we may assume that Ni cannot do any 
internal action.

• For each i ∈ ω let Ni be the π -process such that �i �a I Ni �.
• Let C0 be the π -process such that �λx.0 �a I C0 �.
• Let S0 be the π -process such that �λx.x+�a I S0 �.
• Let E0 be the π -process such that �λx.τ .x++τ�a I E0 �.
• Let C be the π -process such that �!λx.0�a I C �.
• Let S be the π -process such that �!λx.x+�a I S �.
• Let E be the π -process such that �!λx.τ .x++τ�a I E �.

• For each k ∈ ω let Jk be the π -process such that �λx.x 
?
>k�a I Jk �.

It follows from (24) and extensionality that the following equality holds for every k ∈ ω.


 | C | S | E = 
 | C | S | E | Jk. (25)

We now derive some properties for the π -processes N0, N1, N2, N3, . . ..

1. We argue that S0 | Ni
ι−→= Ni+1 is essentially the only one-step nondeterministic computation of S0 | Ni . The following 

argument depends crucially on the fact that neither S0 nor Ni can do any internal action. According to codivergence 
property there is no infinite computation sequence from S0 | Ni . Suppose S0 | Ni → B . This action must be caused by 

S0
λa−→ S ′ and Ni

λa−→ N ′ for some complementary actions λa, λa and some π -processes S ′ and N ′ . If neither λa nor 

λa is a bound output action then S0 | Ni
λa−→ λa−→ B and S0 | Ni

λa−→ λa−→ B . It follows that B →∗ λa−→→∗ λa−→ B ′ = B and 

B →∗ λa−→→∗ λa−→ B ′′ = B for some B ′, B ′′ . Now B | B →+ B ′ | B ′′ = B | B . We derive by induction that there would be 
an infinite computation sequence from S0 | Ni | S0 | Ni , contradicting to the fact that �λx.x+�a | �i�a | �λx.x+�a | �i�a is not 
divergent. If one of λa, λa is a bound output action, we also get an infinite computation by renaming and inserting 
scope operators in appropriate places. More specifically without loss of generality suppose λa = ao and λa = a(o). Let 

S0
aq−→ B1 and Ni

a(p)−→ B2 for fresh private channels p, q. Then

B ≡ (o)(B1{o/p} | B2{o/q}). (26)

It follows from S0 | Ni = B that there must exist some B ′ such that

S0 | Ni
aq−→ a(p)−→ B1 | B2 (27)

is bisimulated by

B →∗ aq−→→∗ a(p)−→ B ′. (28)

Now (26) and (28) imply that (27) can be extended to
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S0 | Ni
aq−→ a(p)−→ B1 | B2 =⇒ λ1

a−→=⇒ λ1
a−→ B ′

1 | B ′
2 (29)

for some B ′
1, B

′
2 and some λ1

a , λ1
a . Consequently the bisimulation (28) can be extended to

B →∗ aq−→→∗ a(p)−→ B ′ =⇒ λ1
a−→=⇒ λ1

a−→ B ′′ (30)

for some B ′′ . The extension can be repeated infinitely often. We eventually get an infinite sequence with alternating 

input-output actions. Similarly we can derive from S0 | Ni
a(p)−→ aq−→ B1 | B2 an infinite sequence with alternating output-

input actions. In this way S0 | Ni | S0 | Ni would induce an infinite sequence of computation. This is again a contradiction. 
We are done.

2. We are going to prove that one and only one of the following may happen: (i) All Ni ’s can only do input actions at a; 
(ii) Almost all Ni ’s can only do bound output actions at a. The proof is as follows:
(a) Ni cannot do both an input action at channel a and an output action at channel a. Otherwise Ni | Ni would be able 

to do an interaction, which would be a contradiction. This is because Ni | Ni cannot perform any nondeterministic 
computation since �i�a | �i�a cannot do any internal action. It cannot do a deterministic computation step since 
that would induce an infinite sequence of internal actions from Ni | Ni | Ni | Ni , like in the previous case. So Ni may 
perform either an input action or an output action exclusively.

(b) If Ni can do an input, respectively output action then N j can do an input, respectively output action for all j ∈ ω
since the latter has to interact with C0.

(c) It follows from �λx.0 �a | �i �a
ι−→= 0 that C0 | Ni

ι−→= 0. Suppose Ni
ac−→ N ′ and N j

ac−→ N ′′ for some N ′, N ′′. Clearly 
N ′ = 0 = N ′′ . But then one could derive from Ni | S0

ι−→= Ni+1 and N j | S0
ι−→= N j+1 that Ni+1 = N j+1, which 

implies i = j. We conclude that if both Ni and N j can do free output actions at channel a then the channels they 
release must be distinct whenever i 	= j.

(d) According to our assumption we have S0 | Ni
τ−→= Ni+1 for all i ≥ 0. Let’s write P

λ−→ if P
λ−→ P ′ for some 

P ′ . It should be clear that if N1
ac−→, then S0 | N0 =⇒ ac−→. Similarly if N2

ad−→, then S0 | N1 =⇒ ad−→. Thus 
S0 | S0 | N0 =⇒ ad−→. By induction we can prove that if Ni can release a global channel at a then that global channel 
must appear in S0 | N0. So only a finite number of N0, N1, N2, . . . can do free output actions. Let h be the least 
number such that, for every j ≥ h, N j does only a bound output action.

By a case analysis on the actions of N0, N1, N2, N3, . . . we can prove the impossibility result.

1. Suppose k > h. Let

Nh
a(p)−→ N ′

h,

Nk
a(p)−→ N ′

k.

In this case C0, D0, E0, Jh , C , D and E can only do input actions at channel a. Let

C0
ap−→ C p

0 ,

D0
ap−→ S p

0 ,

E0
ap−→ E p

0 ,

Jh
ap−→ J p,

C
ap−→ C p = C,

D
ap−→ S p = S p

0 | S,

E
ap−→ E p = E p

0 | E.

None of C0, D0, E0, Jh , C , D and E may perform any output actions. Otherwise there would be either an infinite deter-

ministic computation or a nondeterministic computation step. It follows from (25) that 
 | C | S | E | Jh
ap−→ 
 | C | S | E | J p

must be bisimulated by one of the following.


 | C | S | E
ap−→ 
 | C p | S | E,


 | C | S | E
ap−→ 
 | C | S p | E,


 | C | S | E
ap−→ 
 | C | S | E p .
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In the first case 
 | C | S | E | Jh | Nk
ι−→ (p)(
 | C | S | E | J p | N ′

k) should be bisimulated by 
 | C | S | E | Nk
ι−→

(p)(
 | C p | S | E | N ′
k) due to congruence. This is impossible because, according to Lemma 2.1,

(p)(
 | C | S | E | J p | N ′
k) = 
 | C | S | E | Nk+1

	= 
 | C | S | E

= (p)(
 | C | S | E | N ′
k)

= (p)(
 | C p | S | E | N ′
k).

In the second case 
 | C | S | E | Jh | Nh
ι−→ (p)(
 | C | S | E | J p | N ′

h) should be bisimulated by 
 | C | S | E | Nh
ι−→

(p)(
 | C | S p | E | N ′
h). Using again the full abstraction lemma one derives the following contradiction.

(p)(
 | C | S | E | J p | N ′
h) = 
 | C | S | E

	= 
 | C | S | E | Nh+1

= (p)(
 | C | S p
0 | S | E | N ′

h)

= (p)(
 | C | S p | E | N ′
h).

In the third case 
 | C | S | E | Jh | Nk
ι−→ (p)(
 | C | S | E | J p | N ′

k) need be bisimulated by 
 | C | S | E | Nk
ι−→

(p)(
 | C | S | E p | N ′
k). This is also impossible because (p)(
 | C | S | E p | N ′

k) = (p)(
 | C | S | E p
0 | E | N ′

k) can do a nonde-
terministic computation step, reaching to a state where Nk+1 is not a concurrent component, whereas on the other 
hand the equality (p)(
 | C | S | E | J p | N ′

k) = 
 | C | S | E | Nk+1 is valid.
2. Now suppose the immediate actions of N0, N1, N2, . . . are input actions. In this case an output action of 
 | C | S | E | Jh

induced by Jh , whether it is a free output action or a bound output action, must be bisimulated by an output action of 

 | C | S | E induced by C or D or E . We can deduce a contradiction too.

We have proved that there cannot be any subbisimilarity from M to the π -calculus. �
We can now derive some negative results concerning the π -calculus. The intuition for the negative results is that in each 

of T , L, R and V one can define processes �!λx.0�a , �!λx.x+�a , �!λx.τ .x++τ�a and �λx.x 
?
>k�a rendering the equality (24)

valid. One can also define these processes in π , but the equality (24) is not valid. The reason is that in π when the process 
�λx.x 

?
>k�a receives the encoding of a number, it inputs a name that points to the ‘number’. At this point it does not know 

what the number is. For the same reason it is impossible for 
 | �!λx.0�a | �!λx.x+�a | �!λx.τ .x++τ�a to know how to simulate 
the action.

Theorem 6.2. T 	� π , L 	� π , R 	� π and V 	� π .

Proof. In view of Theorem 4.2 it suffices to prove that T 	� π and L 	� π . We argue that L 	� π . The proof of T 	� π is 
similar. To start with we define the encoding of the numbers in L. Given an abstraction A we write A+ for (x, y)x[A]. Let

0̂
def= (x, y)y[0],

k̂ + 1
def= (x, y)x[̂k+].

The abstractions 0̂, ̂1, ̂2, . . . represent numbers. Since L is complete, computable manipulations of these numbers can be 
defined in L. To apply the general negative result it suffices to define the following simple processes.

�i�a
def= a[̂i],

�λx.0�a
def= a(X),

�λx.x+�a
def= a(X).a[X+],

�λx.τ .x++τ�a
def= a(X).

(
τ .a[X+]+τ

)
,

�λx.x
?
>k�a

def= a(X).(n1o1)(X(n1,o1) |n1(X1).(n2o2)(X1(n2,o2) | . . .

|nk−1(Xk−1).(nkok)(Xk−1(nk,ok) |nk.a[X+]) . . .)),

�!λx.0�a
def= (p)(a(X).p(Z).(Z(a, p) | p[Z ])

| p[(x, z)x(X).z(Z).(Z(x, z) | z[Z ])]),
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�!λx.x+�a
def= (p)(a(X).(a[X+] | p(Z).(Z(a, p) | p[Z ]))

| p[(x, z)x(X).(x[X+] | z(Z).(Z(x, z) | z[Z ])])),
�!λx.τ .x++τ�a

def= (p)(a(X).((τ .a[X+]+τ ) | p(Z).(Z(a, p) | p[Z ]))
| p[(x, z)x(X).((τ .x[X+]+τ ) | z(Z).(Z(x, z) | z[Z ])])).

The last three processes, �!λx.0�a , �!λx.x+�a and �!λx.τ .x++τ�a , are intuitively the processes !a(X), !a(X).a[X+] and 
!a(X). 

(
τ .a[X+]+τ

)
. These replication processes must be implemented in L. It is easy to verify that the processes defined 

in the above satisfy the necessary requirements stated in (14) through (23).

Let G def= �!λx.0�a | �!λx.x+�a | �!λx.τ .x++τ�a . We prove that 
 | G = 
 | G | �λx.x 
?
>k�a . Consider the following transition


 | G | �λx.x
?
>k�a

a(A)−→ 
 | G | J A, (31)

where J A is the following process

(n1o1)(A(n1,o1) |n1(X1).(n2o2)(X1(n2,o2) | . . . | (Xk−1(nk,ok) |nk.a[A+]) . . .)).

The process J A and all its descendants can either carry out an internal action or enable a[A+]. They cannot do any other 
actions. Let’s call P ′ a τ descendant of P if P =⇒ P ′ . Let J be the set of all τ descendants of J A . It can be partitioned into 
three disjoint subsets.

J0
def= { J ′ ∈ J | no τ descendant of J ′ can enable a[A+]},

J1
def= { J ′ ∈ J | every τ descendant of J ′ can enable a[A+] potentially},

J 1
2

def= J \ (J0 ∪ J1).

If J A ∈ J0 then (31) can be bisimulated by 
 | G 
a(A)−→= 
 | G by invoking the component �!λx.0�a . Notice that J A may 

induce an infinite computation. But this is not a problem in the presence of 
. If J A ∈ J1 then (31) can be bisimulated 
by 
 | G 

a(A)−→= 
 | G | a[A+] by invoking the component �!λx.x+�a . If J A ∈ J 1
2

then (31) can be bisimulated by 
 | G 
a(A)−→=


 | G | (τ .a[A+] +τ ) by invoking the component �λx.τ .x++τ�a . We only have to prove that every J ′ ∈ J 1
2

renders true the 
following equality.


 | (τ .a[A+]+τ ) = 
 | J ′. (32)

Suppose J ′ τ−→ J ′′ . It induces the transition


 | J ′ τ−→ 
 | J ′′. (33)

If J ′′ ∈ J 1
2

, then (33) is bisimulated by 
 | (τ .a[A+] +τ ) τ−→ 
 | (τ .a[A+] +τ ). If J ′′ ∈ J0, then (33) is bisimulated by 


 | (τ .a[A+] +τ ) τ−→ 
 | 0. If J ′′ ∈ J1, then (33) is bisimulated by 
 | (τ .a[A+] +τ ) τ−→ 
 | a[A+]. We are done. �
The result L 	� π seems to contradict to the well-known encoding of higher order π -calculus πω in the first order 

π -calculus [49,50] and other similar encodings [54,58]. The higher order process calculi studied in these encodings are 
both abstraction-passing and complete. The criteria for relative expressiveness adopted in these papers are weaker than 
the one of this paper. They include extensionality, equipollence and weak bisimulation. Some of the encodings satisfy the 
full abstraction property, others satisfy only a weaker form of it. Almost all encodings [54,58] satisfy the codivergence 
and branching bisimulation property. As criteria for submodel relationship codivergence and branching bisimulation help to 
derive reasonable properties about interpretations, which is duly demonstrated in the proof of Theorem 6.1. Without these 
two criteria we are not able to conclude for example that Ni cannot perform both an input action and an output action. 
The source models considered in the above mentioned papers are more liberal than L. The equality stated in (24) fails in 
πω since an observer can be powerful enough to detect the presence of the component �λx.x 

?
>k�a . Thus Theorem 6.2 does 

not contradict to the expressiveness results given by the encodings in the afore mentioned papers. We would however like 
to draw reader’s attention to the fact that if we impose the same restrictions on the abstractions in πω we get a variant, 
denoted by say πω

∅ , that is comparable to L. The proof of Theorem 6.2 applies to πω
∅ . It follows that πω

∅ 	� π . On the other 
hand Sangiorgi’s encoding of πω in π is also an encoding of πω

∅ in π . What we do not understand at the moment is if the 
encoding is still fully abstract. Notice that πω

∅ � πω would imply πω 	� π . We do not expect that the question “πω
∅ � πω?” 

is easy to answer. A possible way to attack problems of this kind is to explore the power of universal processes [11]. This is 
left for future investigation.

In the same fashion the result T 	� π seems to contradict to the result in [32] stating that the behaviour of reactive 
Turing machines can be simulated in the π -calculus up to divergence-preserving branching bisimilarity. The main reason 
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Fig. 2. Submodel Relatiohship.

is that the reactive Turing machines have a weaker communication mechanism, and consequently a stronger distinguishing 
power. Messages are passed around token by token, which is easy for the π -calculus to simulate.

Fig. 2 summarises our current understanding of the submodel relationship among the six models. Notice that L 	� T
since !a(X).b[X] cannot be interpreted in T . Notice also that π 	� R because a(x).xx is not interpretable by R. It follows 
that π 	� L and π 	� T . The issue that has not been resolved is if T � L. We remark that T 	� L implies R 	� L. The 
diagram in Fig. 2 is drawn by assuming T 	�L.

7. Conclusion

Axiom of Completeness (∀M. C � M) was proposed as a foundational postulate in [14]. However a model satisfying 
Axiom of Completeness could be too powerful to be implementable. This open-ended view is replaced by a closed world 
view in the present paper. What we have done in this paper is to provide evidence for the universal validity of the Thesis 
of Interaction. The three classical computation models can all be lifted in a natural way to interaction models that satisfy 
the Thesis of Interaction.

Being a powerful model, V has only a few primitives. In V nondeterminism is solely due to interaction. No intensional 
nondeterminism is admitted in any form. It is easy to convince oneself that a guarded choice, say a(0).P + b(1).Q , cannot 
be defined in V without introducing divergence. This is established for several variants of the π -calculus [39,42,16], and 
the proof can be repeated for V . What it indicates is that the guarded choice operator is not implementable. The match 
and the mismatch operators in the π -calculus are implementable. Our V -interpreter of the π -calculus of this paper can be 
easily extended to account for them.

From a programming language viewpoint a subbisimilarity M �N is often given by an encoding. Formally an encoding 
from M to N is an effective function e from the M-processes to the N-processes such that e; =N is a subbisimilarity. Let’s 
write M �e N if there is an encoding from M to N . A programming practitioner would believe the following.

Effective Thesis of Interaction. ∀ M. C �e M �e V .

This is the extension of the Effective Church-Turing Thesis. Now suppose there is an encoding e from a complete model 
M to V . Then there is a V -process that translates the index of an M-process to the index of a V -process. Composing 
this translation with the universal process for V one gets a V -interpreter of M. So in the programming world a complete 
model is sound if and only if it has a V -interpreter.

The Thesis of Interaction is only the first step of the theory of interaction. To explain possible future research directions, 
we need to talk about processes that do not depend on any particular global channels. A parametric definition is defined by 
an equation

D(x1, . . . , xk) = T , (34)

where x1, . . . , xk are variables for natural numbers. T contains no more free variables than x1, . . . , xk and may contain 
instantiated occurrences of D of the form D(t1, . . . , tk). We say that D(x1, . . . , xk) is a k-ary parametric definition defined 
by (34). The parameters are values. The semantics of D(x1, . . . , xk) are defined by the following rule.

T {t1/x1, . . . , tk/xk} λ−→ T ′

D(t1, . . . , tk)
λ−→ T ′

We call D(t1, . . . , tk) the instantiation of D at t1, . . . , tk . In (34) D may appear in T . The unfolding of a parametric definition 
admits dynamic binding in the sense that a private channel may get captured by a scope operator. Two k-ary parametric 
definitions D(x1, . . . , xk) and D ′(x1, . . . , xk) are equal if D(i1, . . . , ik) =V D ′(i1, . . . , ik) for all numbers i1, . . . , ik .

Parametric definition can be defined in terms of replication [11]. A posteriori this has to be true if V is the maximal 
model. Now we may as well let parametric definitions be the first class citizens in V . In a straightforward manner we 
define for each k > 0 a Gödel encoding for the k-ary parametric definitions. Using standard technique it is routine to prove 
the V -version of the fundamental theorems of recursion theory [48,53].
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Enumeration Theorem. There is a k+1-ary parametric definition Dk(x, x1, . . . , xk) such that Dk(x, x1, . . . , xk) is equal to the 
i-th k-ary parametric definition for all i.

S-m-n Theorem. There is an injective primitive recursive k+1-ary function s such that Dk(x1, . . . , xm, . . . , xm+n) is equal 
to Ds(k,x1,...,xm)(xm+1, . . . , xm+n).

Recursion Theorem. Let f be a total computable function. There is a number n such that Dn(x) =D f (n)(x).

Using these theorems a definability theory can be developed for every interaction model.
The Thesis of Interaction also provides the foundation for the theory of nondefinability of interaction models. No pro-

cess can exhibit the behavior specified in (1) in any interaction model because such a process can not be defined in V . 
Nondefinability or unsolvability in the setting of concurrency theory is an avenue of research that calls for further efforts.
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